80 research outputs found

    PULP-HD: Accelerating Brain-Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform

    Full text link
    Computing with high-dimensional (HD) vectors, also referred to as hypervectors\textit{hypervectors}, is a brain-inspired alternative to computing with scalars. Key properties of HD computing include a well-defined set of arithmetic operations on hypervectors, generality, scalability, robustness, fast learning, and ubiquitous parallel operations. HD computing is about manipulating and comparing large patterns-binary hypervectors with 10,000 dimensions-making its efficient realization on minimalistic ultra-low-power platforms challenging. This paper describes HD computing's acceleration and its optimization of memory accesses and operations on a silicon prototype of the PULPv3 4-core platform (1.5mm2^2, 2mW), surpassing the state-of-the-art classification accuracy (on average 92.4%) with simultaneous 3.7×\times end-to-end speed-up and 2×\times energy saving compared to its single-core execution. We further explore the scalability of our accelerator by increasing the number of inputs and classification window on a new generation of the PULP architecture featuring bit-manipulation instruction extensions and larger number of 8 cores. These together enable a near ideal speed-up of 18.4×\times compared to the single-core PULPv3

    Advanced Interfaces for HMI in Hand Gesture Recognition

    Get PDF
    The present thesis investigates techniques and technologies for high quality Human Machine Interfaces (HMI) in biomedical applications. Starting from a literature review and considering market SoA in this field, the thesis explores advanced sensor interfaces, wearable computing and machine learning techniques for embedded resource-constrained systems. The research starts from the design and implementation of a real-time control system for a multifinger hand prosthesis based on pattern recognition algorithms. This system is capable to control an artificial hand using a natural gesture interface, considering the challenges related to the trade-off between responsiveness, accuracy and light computation. Furthermore, the thesis addresses the challenges related to the design of a scalable and versatile system for gesture recognition with the integration of a novel sensor interface for wearable medical and consumer application

    Compressed sensing based seizure detection for an ultra low power multi-core architecture

    Get PDF
    Extracting information from brain signals in advanced Brain Machine Interfaces (BMI) often requires computationally demanding processing. The complexity of the algorithms traditionally employed to process multi-channel neural data, such as Principal Component Analysis (PCA), dramatically increases while scaling-up the number of channels and requires more power-hungry computational platforms. This could hinder the development of low-cost and low-power interfaces which can be used in wearable or implantable real-Time systems. This work proposes a new algorithm for the detection of epileptic seizure based on compressively sensed EEG information, and its optimization on a low-power multi-core SoC for near-sensor data analytics: Mr. Wolf. With respect to traditional algorithms based on PCA, the proposed approach reduces the computational complexity by 4.4x in ARM Cortex M4-based MCU. Implementing this algorithm on Mr.Wolf platform allows to detect a seizure with 1 ms of latency after acquiring the EEG data for 1 s, within an energy budget of 18.4 μJ. A comparison with the same algorithm on a commercial MCU shows an improvement of 6.9x in performance and up to 18.4x in terms of energy efficiency

    BioGAP: a 10-Core FP-capable Ultra-Low Power IoT Processor, with Medical-Grade AFE and BLE Connectivity for Wearable Biosignal Processing

    Full text link
    Wearable biosignal processing applications are driving significant progress toward miniaturized, energy-efficient Internet-of-Things solutions for both clinical and consumer applications. However, scaling toward high-density multi-channel front-ends is only feasible by performing data processing and machine Learning (ML) near-sensor through energy-efficient edge processing. To tackle these challenges, we introduce BioGAP, a novel, compact, modular, and lightweight (6g) medical-grade biosignal acquisition and processing platform powered by GAP9, a ten-core ultra-low-power SoC designed for efficient multi-precision (from FP to aggressively quantized integer) processing, as required for advanced ML and DSP. BioGAPs form factor is 16x21x14 mm3^3 and comprises two stacked PCBs: a baseboard integrating the GAP9 SoC, a wireless Bluetooth Low Energy (BLE) capable SoC, a power management circuit, and an accelerometer; and a shield including an analog front-end (AFE) for ExG acquisition. Finally, the system also includes a flexibly placeable photoplethysmogram (PPG) PCB with a size of 9x7x3 mm3^3 and a rechargeable battery (Ï•\phi 12x5 mm2^2). We demonstrate BioGAP on a Steady State Visually Evoked Potential (SSVEP)-based Brain-Computer Interface (BCI) application. We achieve 3.6 uJ/sample in streaming and 2.2 uJ/sample in onboard processing mode, thanks to an efficiency on the FFT computation task of 16.7 Mflops/s/mW with wireless bandwidth reduction of 97%, within a power budget of just 18.2 mW allowing for an operation time of 15 h.Comment: 7 pages, 9 figures, 1 table, accepted for IEEE COINS 202

    A Wearable Ultra-Low-Power sEMG-Triggered Ultrasound System for Long-Term Muscle Activity Monitoring

    Full text link
    Surface electromyography (sEMG) is a well-established approach to monitor muscular activity on wearable and resource-constrained devices. However, when measuring deeper muscles, its low signal-to-noise ratio (SNR), high signal attenuation, and crosstalk degrade sensing performance. Ultrasound (US) complements sEMG effectively with its higher SNR at high penetration depths. In fact, combining US and sEMG improves the accuracy of muscle dynamic assessment, compared to using only one modality. However, the power envelope of US hardware is considerably higher than that of sEMG, thus inflating energy consumption and reducing the battery life. This work proposes a wearable solution that integrates both modalities and utilizes an EMG-driven wake-up approach to achieve ultra-low power consumption as needed for wearable long-term monitoring. We integrate two wearable state-of-the-art (SoA) US and ExG biosignal acquisition devices to acquire time-synchronized measurements of the short head of the biceps. To minimize power consumption, the US probe is kept in a sleep state when there is no muscle activity. sEMG data are processed on the probe (filtering, envelope extraction and thresholding) to identify muscle activity and generate a trigger to wake-up the US counterpart. The US acquisition starts before muscle fascicles displacement thanks to a triggering time faster than the electromechanical delay (30-100 ms) between the neuromuscular junction stimulation and the muscle contraction. Assuming a muscle contraction of 200 ms at a contraction rate of 1 Hz, the proposed approach enables more than 59% energy saving (with a full-system average power consumption of 12.2 mW) as compared to operating both sEMG and US continuously.Comment: 4 pages, 5 figures, 1 table, 2023 IEEE International Ultrasonics Symposiu

    An EMG Gesture Recognition System with Flexible High-Density Sensors and Brain-Inspired High-Dimensional Classifier

    Full text link
    EMG-based gesture recognition shows promise for human-machine interaction. Systems are often afflicted by signal and electrode variability which degrades performance over time. We present an end-to-end system combating this variability using a large-area, high-density sensor array and a robust classification algorithm. EMG electrodes are fabricated on a flexible substrate and interfaced to a custom wireless device for 64-channel signal acquisition and streaming. We use brain-inspired high-dimensional (HD) computing for processing EMG features in one-shot learning. The HD algorithm is tolerant to noise and electrode misplacement and can quickly learn from few gestures without gradient descent or back-propagation. We achieve an average classification accuracy of 96.64% for five gestures, with only 7% degradation when training and testing across different days. Our system maintains this accuracy when trained with only three trials of gestures; it also demonstrates comparable accuracy with the state-of-the-art when trained with one trial

    Q-PPG: Energy-Efficient PPG-Based Heart Rate Monitoring on Wearable Devices

    Get PDF
    Hearth Rate (HR) monitoring is increasingly performed in wrist-worn devices using low-cost photoplethysmography (PPG) sensors. However, Motion Artifacts (MAs) caused by movements of the subject's arm affect the performance of PPG-based HR tracking. This is typically addressed coupling the PPG signal with acceleration measurements from an inertial sensor. Unfortunately, most standard approaches of this kind rely on hand-tuned parameters, which impair their generalization capabilities and their applicability to real data in the field. In contrast, methods based on deep learning, despite their better generalization, are considered to be too complex to deploy on wearable devices.In this work, we tackle these limitations, proposing a design space exploration methodology to automatically generate a rich family of deep Temporal Convolutional Networks (TCNs) for HR monitoring, all derived from a single "seed" model. Our flow involves a cascade of two Neural Architecture Search (NAS) tools and a hardware-friendly quantizer, whose combination yields both highly accurate and extremely lightweight models. When tested on the PPG-Dalia dataset, our most accurate model sets a new state-of-the-art in Mean Absolute Error. Furthermore, we deploy our TCNs on an embedded platform featuring a STM32WB55 microcontroller, demonstrating their suitability for real-time execution. Our most accurate quantized network achieves 4.41 Beats Per Minute (BPM) of Mean Absolute Error (MAE), with an energy consumption of 47.65 mJ and a memory footprint of 412 kB. At the same time, the smallest network that obtains a MAE < 8 BPM, among those generated by our flow, has a memory footprint of 1.9 kB and consumes just 1.79 mJ per inference

    Efficient Low-Frequency SSVEP Detection with Wearable EEG Using Normalized Canonical Correlation Analysis

    Get PDF
    Recent studies show that the integrity of core perceptual and cognitive functions may be tested in a short time with Steady-State Visual Evoked Potentials (SSVEP) with low stimulation frequencies, between 1 and 10 Hz. Wearable EEG systems provide unique opportunities to test these brain functions on diverse populations in out-of-the-lab conditions. However, they also pose significant challenges as the number of EEG channels is typically limited, and the recording conditions might induce high noise levels, particularly for low frequencies. Here we tested the performance of Normalized Canonical Correlation Analysis (NCCA), a frequency-normalized version of CCA, to quantify SSVEP from wearable EEG data with stimulation frequencies ranging from 1 to 10 Hz. We validated NCCA on data collected with an 8-channel wearable wireless EEG system based on BioWolf, a compact, ultra-light, ultra-low-power recording platform. The results show that NCCA correctly and rapidly detects SSVEP at the stimulation frequency within a few cycles of stimulation, even at the lowest frequency (4 s recordings are sufficient for a stimulation frequency of 1 Hz), outperforming a state-of-the-art normalized power spectral measure. Importantly, no preliminary artifact correction or channel selection was required. Potential applications of these results to research and clinical studies are discussed

    A transprecision floating-point cluster for efficient near-sensor data analytics

    Full text link
    Recent applications in the domain of near-sensor computing require the adoption of floating-point arithmetic to reconcile high precision results with a wide dynamic range. In this paper, we propose a multi-core computing cluster that leverages the fined-grained tunable principles of transprecision computing to provide support to near-sensor applications at a minimum power budget. Our design - based on the open-source RISC-V architecture - combines parallelization and sub-word vectorization with near-threshold operation, leading to a highly scalable and versatile system. We perform an exhaustive exploration of the design space of the transprecision cluster on a cycle-accurate FPGA emulator, with the aim to identify the most efficient configurations in terms of performance, energy efficiency, and area efficiency. We also provide a full-fledged software stack support, including a parallel runtime and a compilation toolchain, to enable the development of end-to-end applications. We perform an experimental assessment of our design on a set of benchmarks representative of the near-sensor processing domain, complementing the timing results with a post place-&-route analysis of the power consumption. Finally, a comparison with the state-of-the-art shows that our solution outperforms the competitors in energy efficiency, reaching a peak of 97 Gflop/s/W on single-precision scalars and 162 Gflop/s/W on half-precision vectors
    • …
    corecore